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Abstract: In the United States, General Aviation (GA) moves a small volume of passengers, but it
accounts for a disproportionate number of accidents and serious incidents. There is concern among
GA pilots and owners that an airplane is more likely to fail in the first hours of service following main-
tenance, e.g., human errors during maintenance and early mortality of newly installed components.
However, no prior work has investigated whether this concern is substantiated by data. Prior research
has analyzed maintenance-related failures in airline transport aviation, but not in GA. This paper
asks the question: does evidence show higher rates of aircraft-caused accidents and serious incidents in GA
airplanes just returned to service after inspective maintenance? We analyze GA events reported to the NTSB
between 2008 and 2024, comparing the post-maintenance reliability sampled on adverse events caused
by aircraft alone, against those caused by human error alone. We find that the answer is yes: the risk
is 33.8% higher than baseline in the first hour following an inspection, and it remains higher than
baseline for at least the first 31 hours. Heightened pilot and operator caution in the early hours in
service after an inspection are therefore justified.

Keywords: General; aviation; maintenance; reliability; inspection; failure

1. Introduction

General Aviation (GA) moves a negligible amount of passengers per year compared to airline
transport operators, but it accounts for 71.6% of all accidents and serious incidents reported to the
United States’” National Transportation Safety Board (NTSB) between 2008 and 2024 (see Table 1). (For
brevity, we will call event any accident or serious incident that is reported to the NTSB, per definitions
in ICAO Annex 13 or, equivalently, 49 CFR §830.2 in the US Federal regulations.) Of those events, 66.0%
were imputed to aircraft-related causes, as either the primary factor or a co-factor, suggesting that
mechanical factors are a prime concern. The cumulative loss of life, health, and property associated
with these events suggests that GA safety deserves more attention and systematic analysis than it has
received so far.

Maintenance plays a critical factor in aircraft-related events. A 2002 FAA study[1] found that
at least 7.05% of all GA accidents that occurred between 1988 and 1997 were maintenance-related.
Furthermore, the authors

believe that 7.05% is a conservative estimate of GA maintenance-related accidents during this period.
[...] there are probably many more maintenance-related accident reports in the NTSB Database that
were not included in this study because they were not designated with a maintenance code.

Two known, major causes of failure after maintenance are: (1) early mortality of newly installed
components, and (2) Maintenance-Induced Failures (MIFs), i.e., failures whose leading cause is
improperly performed maintenance. In GA, a large fraction of all maintenance is performed as
a result of scheduled inspections. All GA planes undergo annual inspections. Then, planes involved
in training or rental are typically also inspected every 100 hours in service. During an inspection,
not only faulty systems are impacted, being replaced or repaired, but healthy systems are touched as
well, as necessary to determine their health. As a result, systems that will later be deemed healthy are
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disassembled and re-assembled. This exposes those systems to human error. More specifically, there
is a non-zero risk that, while repairing faulty systems, mechanics accidentally degrade healthy ones,
thus causing early failures after the inspection. This is just one example of MIF, but numerous articles
have examined the diverse incarnations of MIF [1,4,6,7,10].

Table 1. Breakdown of NTSB events (accidents and serious incidents) that occurred 2008-2024 per type of operation,
indicated by the Part of CFR, Title 14 governing those operations. (Space and unmanned operations excluded.)
General aviation accounts for a large majority of these events.

Regulations Type of Operations Events
Part 91 General aviation 20,524
Part 137 Agricultural operations 1,142
Part 135 Air taxi and charter operations 855
Part 121 Domestic airline transport operations 849
Part 129 Foreign airline transport operations 319
— Public-use operations 270
Part 133 Rotorcraft external load operations 119
Part 91K Fractional ownership operation 14
Part 125 Private carriage on large airplane 6
Part 103 Ultralight vehicles 5
Other Other and unknown operations 3,855
Total TOTAL 27,958

Maintenance risks are a popular discussion topic among GA pilots, owners and mechanics, with
some explicitly voicing the concern that airplanes would be more dangerous to fly during the first
hours in service after maintenance, compared to their baseline risk level (i.e., after accumulating
more service time without incident). But in these discussions, beliefs are typically only supported
by anecdotal evidence and personal experience. Some mechanics[2] even propose a maintenance
minimalism approach: avoid maintenance except when strictly necessary, with the intent of reducing
MIF risks. Despite deserving quantitative analysis, the matter has not been explored in prior literature.
We focus on that creating that analysis.

In our approach, we isolate the sample of NTSB events that occurred between 2008 and 2024,
involving airplanes operating under Part 91 regulations, in which the aircraft was a causal factor and
human performance was not, and study the two metrics Airframe Time in Service since Last Inspection
(ATSLI), and Engine Time in Service since Last Inspection (ETSLI). We identify the distribution of events
with respect to ATSLI and ETSLI values. Finally, we estimate the hazard rates associated with strictly
aircraft-caused events.

Paper organization. The remainder of this paper is organized as follows: Section 3 describes the
public datasets we consume; Section 4 describes the statistical methods we employ to correct sampling
bias and estimate hazard functions; Section 5 presents the results; and Section 6 draws our conclusions.

Novelty claims. To the best of our knowledge, this paper is the first to focus on General Aviation
while investigating a link between maintenance and accidents. It is also the first to propose employing
strictly human-caused events as a proxy for the over-representation of low times in service, to correct for
sampling bias.

2. Related Literature

Boyd[3] offers a broad analysis of the safety record of General Aviation (GA) operations, discussing
accident risk factors and possible mitigations, but does not cover maintenance-induced failures.
Hieminga and Turkoglu[4] examine maintenance-associated risks and propose a taxonomy to classify
them, but they analyzed commercial air transport only. Insley and Turkoglu[6] also limited their review
and analysis of aircraft maintenance-related accidents and serious incidents to commercial air transport
aviation. Ewertowski et al.[5] discuss risk management in GA, but do not address maintenance-related
risk. Tyagi et al.[7] offer a comprehensive review of all literature on safety management and hazard in
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the aircraft maintenance industry, but it excludes GA. Janovec and Mojzisova[8] explore in depth the
root causes of maintenance-related accidents in civil aviation (once again, excluding GA) and propose
countermeasures, but do not focus on quantitative risk estimation. Kiyak[9] models the impact of
preventive maintenance on total cost (including reliability cost and maintenance cost), but does not
estimate risk quantitatively in any area of flight operations. Wild[10] performs an in-depth statistical
examination of maintenance-related accidents that occurred in civil aviation as reported in the Aviation
Safety Network dataset, but he does not cover GA, and the research questions he explores do not
include a relationship between risk and time in service after maintenance.

3. Data Sources
3.1. NTSB Events

Our research uses the public NTSB Aviation Database', in the format that the NTSB adopted in
2008. This is a relational database comprising 20 tables in Microsoft Access MDB format. Four tables
are of interest to our exploration: "events", "aircraft", "findings", and "engines". At the time of our
analysis, the database includes accidents and serious incidents that occurred between January 2008
and November 2024.

Our analysis focuses exclusively on GA airplanes (Part 91). The aircraft categories we exclude
(rotorcraft, powered lift, lighter than air, etc.) account for a minor fraction of the dataset. We also
exclude space launch operations and unmanned craft events, which are also negligible. Events can
have a record of ATSLI, ETSLI, both, or neither. We restrict our analysis to events for which either
ATSLI or ETSLI is tracked. The cardinality of these sets are in Table 2.

Table 2. NTSB event sample sizes involving airplanes with recorded Airframe or Engine Time in Service since
Last Inspection (ATSLI and ETSLI, respectively). Breakdown by cause of event. Comparison between GA and
Commercial Aviation.

General Aviation Commercial Aviation

Event count (Part 91) (Parts 121, 129, 135)
NSTB Airplane events 16,635 1,109
NTSB events with ATSLI recorded 5,696 217
Human-related events 4,298 151
Aircraft-related events 4,702 155

Strictly human-caused events 579 42

Strictly aircraft-caused events 983 46
Dual-cause events 3,719 109

NTSB Airplane events with engine time records 14,815 296
NTSB events with ETSLI recorded 5,181 144
Human-related events 4,196 118
Aircraft-related events 4,361 97

Strictly human-caused events 486 39

Strictly aircraft-caused events 651 18
Dual-cause events 3,710 79

Causal Factors. The NTSB offers causal findings for each event. Causal factors are crucial to
the statistical analysis we conduct in this paper. Most events have more than one causal factor. Our
approach distinguishes two major causal factors: aircraft and human.

*  We call an event human-related and aircraft-related if any of the NTSB findings associated with that
event are in the aircraft and in the human category, respectively.

*  We call an event strictly human-caused if at least one of its findings is in the human category and
no findings are in the aircraft category.

1 see the Data Availability Statement at the end of this paper.
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e We call an event strictly aircraft-caused if at least one of its findings is in the aircraft category and
no findings are in the human category.

A majority of events are caused by factors in both categories. Table 2 offers a breakdown of events by
causal factor, and the charts in Figure 1 visualize how events distribute over ATSLL
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Figure 1. Event histograms binned by ATSLI with 5h bins, broken down by cause, with the ATSLI axis truncated to
300h for ease of visualization. The top charts describe GA data. The bottom charts, reported only for comparison,
represent commercial aviation (Parts 121, 129 and 135).

3.2. FAA General Aviation and Part 135 Activity Surveys

We approach post-maintenance reliability by comparing the sample of adverse events caused
by the aircraft alone against the sample of those caused by human error alone. In this way we can
estimate the proportional hazard (i(t)) due to recent maintenance. This choice is justified in detail in
Section 3.4.

In the last section of this paper, we will report the absolute hazard rates (A1 (t)) for strictly aircraft-
caused events, expressed in events per Million hours (pMh) flown and, equivalently, Mean Times
Between Failures (MTBF) expressed in hours in service. We derive those as the product: A1 (t) = ¢(t)Ao,
where A is the baseline hazard rate of strictly aircraft-caused events over all GA hours flown.

In turn, we estimate the A( baselines using data from Table 2.1 of the General Aviation and Part
135 Activity Surveys published by the United States’ Federal Aviation Administration (FAA)?. We use
survey years 2018 through 2023, inclusively. Note that the surveys lump together Part 91 and Part 135
statistics, while, in the context of this paper, we focus on Part 91 flights only. In spite of this difference,
the FAA surveys are still the best resource available to us to estimate Ay. We compute A as the ratio
between 2018-2023 Part 91+135 event counts we extracted from the NTSB dataset and the total hours
flown reported in the FAA survey. The results are in Table 3. Since the survey distinguishes between
single- and twin-engine aircraft, we compute distinct values of A for single- and twin-engine aircraft,

2 see the Data Availability Statement at the end of this paper.
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and for generic piston aircraft regardless of number of engines. In the table, we report baseline rates
for both strictly aircraft-caused events and aircraft-related events, for comparison.

Table 3. Absolute baseline hazard rates (1) and corresponding MTBF for airplane-related and for strictly airplane-
caused events, obtained cross-referencing NTSB and FAA statistics over the years 2018-2023. Values of Ay are
expressed in events per million hours (pMh) in service.

‘ Aircraft-related events ‘ Strictly aircraft-caused events

Hours in | Event Ao MTBF | Event Ao MTBF

Service | count  (pMh) (hours) | count (pMh) (hours)

Single Engine 76,815,154 | 3,964 51.6044 19,378 662 8.6181 116,035
Twin Engine 9,179,927 292 31.8085 31,438 51 5.5556 179,999
All Piston 85,995,081 4,256  49.4912 20,206 713 8.2912 120,610

3.3. Metrics of Interest

Two metrics tracked in the NTSB dataset are crucial to our research question: Airframe Time in
Service since Last Inspection (ATSLI) and Engine Time in Service since Last Inspection (ETSLI). By
Time In Service (T1S), we never intend to mean wall-clock time elapsed since a specified occurrence,
but rather a cumulative count of hours during which the aircraft was operated since that occurrence.
Operators are required by law to record the TIS when maintenance is performed. The law affords
operators some freedom in how to measure TIS, with most GA operators choosing tachometer time. The
tachometer accumulates, per each real-time hour, a fraction of hours equal to the ratio between the
RPMs the engine was developing, and a reference RPM value, typically maximum-continuous-power
RPMs. For example, if the pilot operates the engine at 60% of reference RPMs for one wallclock hour,
tachometer time will increase its count by 0.6. Tachometer time can even run faster than real time, if
the pilot exceeds the reference RPM value.

At each event, the NTSB makes an effort to reconstruct ATSLI and ETSLI from the aircraft records
and other investigations, with variable degrees of success. In the NTSB database, about one third of
the events report ATSLI and/or ETSLI values (Table 2). We limit our analysis only to events for which
ATSLI or ETSLI is recorded.

The amount and type of maintenance information that the NTSB has decided to track limits the
scope of research questions that one can answer. For example, the dataset does not track inspections
preceding the last one, which makes it impossible to test a hypothesis that accounts for a plane’s
longer-term maintenance history.

3.4. Sampling Bias and Low-time-in-service Over-representation

The NTSB event sample suffers from a sampling bias that causes low ATSLI and ETSLI values
to be over-represented. Specifically, most GA airplanes do not fly many hours between mandated
inspections, so events with low ATSLI and ETSLI are disproportionately frequent.

An explanation of the causes follow. Annual inspections must occur at calendar intervals, regard-
less of time in service, and most GA planes do not see many hours in service in each 12-month interval,
due to the constraints inherent in personal ownership. Further evidence for this claim is offered by
the breakdown of NTSB events by purpose of flight (see Table 4), where 75.7% of all Part 91 events
occurred in personal flights. By contrast, aircraft used for commercial passenger carriage are used as
much as business allows. Moreover, airplanes used for instruction or rental are typically subject to
100-hour inspections in addition to annual inspection. As a result, these planes are virtually never
flown at ATSLI or ETSLI values that exceed 100 hours.

Without bias correction, the data would suggest artificially low survival rates at high time-in-
service values. The bias countermeasures we employ are described in the next section.
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Table 4. Breakdown of Part 91 NTSB-tracked airplane events by primary purpose of flight. Personal flying is
responsible for 75.7% of all tracked events.

Code Primary Purpose Events
PERS Personal 12,568
INST Instructional 2,451
BUS Business 303
POSI Repositioning 286
FLTS Flight Test 219
AOBV  Aerial Observation 130
OWRK  Other work use 115
SKYD Skydiving 100
FERY Ferry 98
BANT Banner Tow 77
EXEC Executive/ Corporate 76
BUS Business 69
ASHO  Airrace / Airshow 55
UNK Unknown 30
GLDT  Glider tow 29
PUBU  Public Use / Service 15
AAPL  Aerial Application 7
ADRP  Air Drop 4
FIRF Firefighting 2

TOTAL 16,634

4. Methods

To correct the sampling bias present in the sample of strictly aircraft-caused events we plan to divide
hazard rates, at any given time in service t, by a measure of the over-representation of all GA flying at
that t. Ideally, that measure would be the statistical distribution of ATSLI and ETSLI values across all
GA hours flown. Unfortunately, that measure is not available because neither the NTSB nor the FAA
dataset tracks uneventful flights.

We propose using a proxy population as a measure of the over-representation. The proxies we
choose are the ATSLI and ETSLI distributions of strictly human-caused events. This is a creative choice
and deserves justification: it seems reasonable to assume that human performance is independent from
aircraft- and engine- time in service. By this logic, strictly human-caused events should occur uniformly
over all hours flown in a given aircraft and therefore be a reasonable proxy for how ATSLI and ETSLI
distribute across all Part-91 hours flown.

We plot histograms of the two distributions of strictly aircraft- and strictly human-caused events,
in red and green, respectively, in Figure 2 with 5-h wide bins. Note that bins are drawn semi-
transparent: a majority of red bins surpassing the corresponding green ones in the bins in the 0-75h
range suggest that airplanes suffer from increased early hazards, even after sampling bias correction.
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Figure 2. Visual comparison between the empirical density histogram of strictly aircraft-caused events, in red,
and strictly human-caused ones, in green. The left and right charts are the distribution over ATSLI and ETSLI,
respectively. Bin width is 5 hours. Green and red histograms are overlapped and semi-transparent: a bin
with a "red top" indicates that airplane-caused events exceed pilot-caused ones. The green sample is our over-
representation reference. Red bins surpassing green bins in the early (0-25) hours in service indicate that failure
rates are higher at low TSLI, even after correcting for sampling bias. TSLI values are truncated at 300h for ease of
presentation.

5. Results

In Section 5.1 we begin by comparing the statistical distributions of service hours since last
inspection between the samples of strictly human-caused events and strictly aircraft-caused events. In
Section 5.2 we visually compare their empirical survival functions. In Section 5.3 we model the effect
of maintenance with a time-invariant multiplicative factor of the baseline hazard function. In Section
5.4 we fit the hazard functions independently and produce a time-varying hazard proportion function.
Finally, in Section 5.5 we estimate the absolute hazard functions of post-maintenance flight.

5.1. Hypothesis Testing

We now perform a two-sample Kolmogorov-Smirnov hypothesis test to get a quantitative measure
that aircraft-caused event rates exceed human-caused events, which serve as a measure of over-
representation. We perform this test for both ATSLI and ETSLI.

e  Alternate hypothesis Hj: "Strictly aircraft-caused events occur at lower ATSLI/ETSLI values
than strictly human-caused events." (i.e., "Recent maintenance raises failure rates".)

e Null hypothesis Hj: The two samples come from the same distributions. "Strictly aircraft-caused
and strictly human-caused events are drawn from the same distribution over ATSLI/ETSLL" (i.e.,
"Recent maintenance does not affect failure rates".)

Test protocol: we choose & = 0.05 as a significance level; if p-value < 0.05, we reject Hy in favor of Hy;
if p-value > 0.05, we are unable to reject Hy.

The results are presented in Table 5: in both tests, p-values are well below significance, so we reject the
null hypothesis in both cases. Data supports the alternate hypothesis: aircraft-caused events occur at
disproportionately lower time-in-service values, i.e., recent maintenance raises accident and incident
rates.


https://doi.org/10.20944/preprints202502.1463.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2025 d0i:10.20944/preprints202502.1463.v1

8 of 16

Table 5. Results of 2-sample Kolmogorov-Smirnov hypothesis testing.

ATSLI ETSLI

K-S statistic 0.09570 0.08465
Number of events 5,696 5,181
p-value 0.00115 0.01706
Conclusions Reject Hy  Reject Hy

5.2. Survival Function Comparison

Additional confirmation of the increased aircraft risk due to recent inspective maintenance after
bias correction is obtained comparing the empirical survival functions® of the two populations of
interest, charted in Figure 3. Charted in red is the empirical survival function of strictly aircraft-caused
events; charted in green is the empirical survival function of strictly human-caused events, which is our
measure of over-representation. The left and right charts depict ATSLI and ETSLI, respectively; they
show a consistent story.

ATSLI Empirical Survival Functions ETSLI Empirical Survival Functions
1.0 —— Strictly aircraft caused 10 —— Strictly aircraft caused
—— Strictly human caused —— Strictly human caused

0.8
0.6
0.4
0.2
0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
ATSLI (Airframe Time-in-service since Last Inspection) ETSLI (Engine Time-in-service since Last Inspection)

Figure 3. Empirical survival functions of strictly aircraft-caused events, in red, and strictly human-caused ones, in
green. The left and right charts are the distribution over ATSLI and ETSLI, respectively. The green distribution is
our chosen measure of over-representation. The chart is limited to 250h for ease of illustration.

Note that the survival rates we chart here are not computed over the entire population of aircraft
flown in the period examined-that population is not tracked by the NTSB-but only over the population
of airplanes that incurred an event at some point. For example, if the survival function assumes value
0.2 at 70h ATSLI, that means that 20% of the aircraft that experienced an event at some point still have
not experienced it at 70h. Actual survival rates are much higher. We will present absolute failure rates
at the end of this paper.

Discussion: In both charts, the strictly aircraft-caused survival function curves descend earlier
than the strictly human-caused survival curves, with a gap between the two that extends from Oh until
approximately 60h. This indicates that aircraft risk is heightened during that window, even after
correcting for low-TIS over-representation.

3 fora precise definition of this term, see the Reliability and Survival Statistics Term Summary in the Appendix A.
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5.3. Risk Quantification via Cox’s Proportional Hazards Model

We now estimate the increased aircraft risk due to recent inspective maintenance while correcting
for sampling bias, by fitting our data to Cox’s Proportional Hazards (CPH) model. We do that for
both ATSLI and ETSLI values, obtaining similar results. CPH is a model from survival analysis theory
which assumes that a population suffers a baseline risk, represented by hazard function h(t) and, in
addition to that, when a particular treatment or an action is applied, the hazard function becomes
hy(t) = hy(t). The proportional hazard i is a time-invariant factor that multiplies the baseline hazard.
(For definitions of terms like hazard function, reliability function, ECHF, etc., please see the Reliability
and Survival Statistics Term Summary in the Appendix A.)

We apply Breslow’s method[11] of non-parametric CPH fitting to the two samples: strictly human-
caused events, representing ho(t), and strictly aircraft-caused events, representing hy (t). We truncate
both samples at the 200h cutoff point, past which the proportionality assumption no longer seems to
hold (see Figure 4). We obtain the following estimates and confidence intervals for :

Empirical Cumulative Hazard Functions - ATSLI Empirical Cumulative Hazard Functions - ETSLI
10! —— Strictly aircraft caused 10! —— Strictly aircraft caused
—— Strictly human caused —— Strictly human caused
10° 10°
107! 107!
1072 1072
10° 10t 10?2 103 10° 10t 102 103
ATSLI (Airframe Time-in-service Since Last Inspection) ETSLI (Engine Time-in-service Since Last Inspection)

Figure 4. Region of applicability of Cox’s Proportional Hazard (CPH) model. Visually, the CPH assumptions hold
in the region where the Empirical Cumulative Hazard Functions (ECHF) for the two populations are parallel when
charted in log-log space. Here, that region appears to be to be 0...200 h. The red curve is the strictly aircraft-caused
events’ ECHF, and the green is the strictly human-caused events” ECHF, our measure of over-representation. The
left and right charts depict ATSLI and ETSLI, respectively.

Table 6. Results of Breslow’s method of non-parametric CPH fitting applied to both measures of time in service.

ATSLI ETSLI
Estimated 1.2268 1.2353
95% confidence interval for [1.1037,1.3637] [1.0930, 1.3962]

Discussion: CPH fitting reveals that in the 0...200h range of time in service after inspection, aircraft
causes are responsible for a 23% average increase in accidents and serious incidents. Results are
similar for both airframe and engine times in service. Assuming that strictly human-caused events
are not associated with maintenance, this would indicate that airplanes are indeed more dangerous
immediately after maintenance.
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Limitations: Because CPH assumes a time-invariant 1, it does not model how aircraft risk changes
over the first few hours in service. Nevertheless, it is a useful summary indicator of the risk gap
between the two populations, approximated by constant hazard functions hy(t) = Ag and Iy (t) = A;.
The two CHFs corresponding to Ag and A; appear as straight lines in log-log space: see the red and the
green dashed lines in Figure 5, plotted against the empirical CHF of the actual distributions, drawn
with discrete dots.

In the next section of this paper, we obtain a time-varying estimate of the proportional risk.

Empirical vs. Fitted Cumulative Hazard Functions - ATSLI Empirical vs. Fitted Cumulative Hazard Functions - ETSLI
ECHF, strictly aircraft-caused events +  ECHF of strictly aircraft-caused events
ECHF, strictly human-caused events - ECHF of strictly pilot-caused events
10! Fitted CHF - strictly aircraft-caused events 101 Fitted CHF - strictly aircraft-caused events
Fitted CHF - strictly human-caused events Fitted CHF - strictly human-caused events
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Figure 5. We use Cox Proportional Hazard (CPH) model fitting to estimate aircraft risk corrected for sampling
bias. Visually, the proportional hazard 1 is the vertical distance between the two Cumulative Hazard Functions
in log-log space. For ease of comparison, we chart both the empirical CHFs of the actual distributions (discrete
points), and the CHFs of corresponding constant-hazard rate Ay, A1 fitted to the data (dashed lines). Green curves
are our chosen measure of over-representation.

5.4. Proportional Hazard Function Estimation

We now take the final step toward deriving the time-dependent proportional Hazard Function
P(t) of strictly aircraft-caused events. With that, we can compute absolute event rates Aq(t) for every
hour of ATSLI or ETSLI, which express how dangerous an airplane is during that hour in service.

To do that, we adopt a parametric approach:

1.  We fit the ATSLI distribution hy(t) of strictly aircraft-caused events. This distribution suffers
from sampling bias as described earlier. The best fit is a Weibull mixture, of parameters a1 =
32.1546, B1 = 0.919913, ay = 858.447, B, = 0.560298, w1 = 0.934676, depicted in Figure 6(a).

2. We fit the ATSLI distribution hy(t) of strictly human-caused events. This distribution is our chosen
measure of sampling bias. The best fit is Weibull mixture, of parameters a1 = 42.0653, 31 =
0.941214, ap = 1762.77B, = 0.825542, w1 = 0.955302, depicted in Figure 6(b).

3. Wederive ¢(t) = hy(t)/ho(t), the proportional hazard functions corrected for sampling bias. It
is charted in Figure 7.


https://doi.org/10.20944/preprints202502.1463.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2025 d0i:10.20944/preprints202502.1463.v1

11 of 16

Part 91 Strictly aircraft-caused events - Fitted Weibull distribution Part 91 Strictly human-caused events - Fitted Weibull distribution

99.9999% 99.9999%

99.99%
99.9%

99.99%
99.9%
99% 99%
95%
90%
80%
70%
60%

95%
90%
80%
70%
60%
50%
40%
30%

Fraction failing

01 1 10 100 1000 100 01 1 10 100 1000 100
ATSLI (h) - Airframe Time-in-service since Last Inspection ATSLI (h) - Airframe Time-in-service since Last Inspection
(@ (b)
Part 91 Strictly aircraft-caused events - Fitted Weibull distribution Part 91 Strictly human-caused events - Fitted Weibull distribution
99.9999% Fitked Weibuil_3p A 99:9999% Fitted Weibull_3P y

99.99% (a=40.489, =0.496, y=1.0) 90.00% . (a=50209, B=0.592, y=1.0)
99.9%
99%
95%
90%
80%
70%
60%
50%
40%
30%

10 0.001 0.01 01 1 10 100 1000 100 10 0.001 001 01 10 100 1000 10¢

ETSLI (h) - Engine Time-in-Service Since Last inspection ETSLI (h) - Engine Time-in-ser

Figure 6. Failure probability plotted in log-log scale for each fitted distribution: (a) ATSLI of strictly aircraft-caused
events; (b) ATSLI of strictly human-caused events; (c) ETSLI of strictly aircraft-caused events; (d) ETSLI of strictly
human-caused events. We find a higher quality of fit for ATSLI data than for ETSLI.

We choose to derive () as a ratio between two smooth, parameterized PDF functions.

Figure 7 shows that during the first hour, the hazard rate is 33.8% higher then baseline, then it’s
30.0% higher in the second hour, and it keeps decreasing, crossing the baseline level at 31h ATSLI.
It reaches a minimum at 188h ATSLI, at which the relative risk is 56.4% of baseline. Then it starts
increasing again, crossing baseline level once more at 327h and reaching a new peak at 478h ATSLI, at
a risk level 37.1% above the baseline. In its first 500h, the curve resembles a typical "bathtub curve"
hazard function as seen in numerous reliability applications[12], with an early mortality period, a
useful life period, and a wear-out period.

We decide not to extend our ATSLI considerations to ETSLI because the quality of parametric fits
we were able to achieve on ETSLI data (see Figure 6(c),(d)) appeared insufficient for use in further
analysis.
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Figure 7. Relative hazard function () for aircraft-caused events, as a function of ATSLL

5.5. Absolute Hazard Function Estimation

We now combine (t), the bias-corrected proportional hazard function of strictly airplane-caused
events as a function of ATSLI (derived in the previous section) with A, the time-invariant absolute
baseline hazard rate we derived earlier, in Section 3.2. We use three distinct estimates for A, one for
single-engine planes, one for twin-engines, and one for generic piston engines.

That yields absolute risk rates A1 (t) = 1(f)Ao that we tabulate in Tables 7, 8, and 9 for the first
15h ATSLI. Note that we estimated ¢(t) on strictly aircraft-caused events to exclude the influence of
other factors, but it seems now sound to also apply ¢ (t) also to aircraft-related events, so the tables
present A; for both event classes.

An example of using the tables follows: in the first hour of service since inspection, hazard is
increased by a factor of 1.338 x: in Single-Engine airplanes, this leads to a rate of 11.533 strictly aircraft-
caused events per million hours and 69.059 aircraft-caused events per Million hours. Equivalently,
the expected amounts of hours flown before a strictly aircraft-caused or an aircraft-related event are
86,707 and 14,480 hours. These hazard rates are significantly higher than the baselines presented in
Section 3.2.
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Table 7. Absolute rates of strictly-aircraft caused and aircraft-related events in the first 15 hours of ATSLI, for
single-engine GA airplanes.

Single-Engine Airplanes
ATSLI () Aqstrict Aq aircraft MTBF strict  MTBF aircraft

aircraft related aircraft related
(h) (pMh) (pMh) (h) (h)
1 1.338 11.533 69.059 86,707 14,480
2 1.300 11.207 67.106 89,230 14,902
3 1.275 10.992 65.818 90,977 15,193
4 1.256 10.821 64.798 92,409 15,433
5 1.239 10.676 63.927 93,668 15,643
6 1.224 10.547 63.153 94,817 15,835
7 1.210 10.429 62.446 95,889 16,014
8 1.197 10.319 61.792 96,905 16,183
9 1.186 10.217 61.177 97,878 16,346
10 1.174 10.120 60.596 98,817 16,503
11 1.164 10.027 60.043 99,728 16,655
12 1.153 9.939 59.513 100,616 16,803
13 1.143 9.854 59.003 101,485 16,948
14 1.134 9.772 58.511 102,338 17,091
15 1.125 9.692 58.035 103,177 17,231

Table 8. Absolute rates of strictly-aircraft caused and aircraft-related events in the first 15 hours of ATSLI, for
twin-engine GA airplanes.

Twin-Engine Airplanes
ATSLI () Aqstrict Ag aircraft MTBF strictc  MTBF aircraft

aircraft related aircraft related
(h) (pMh) (pMh) (h) (h)
1 1.338 7.435 42.567 134,504 23,492
2 1.300 7.225 41.364 138,418 24,176
3 1.275 7.086 40.569 141,128 24,649
4 1.256 6.976 39.941 143,349 25,037
5 1.239 6.882 39.404 145,302 25,378
6 1.224 6.799 38.927 147,084 25,689
7 1.210 6.723 38.491 148,747 25,980
8 1.197 6.652 38.088 150,323 26,255
9 1.186 6.586 37.709 151,832 26,518
10 1.174 6.524 37.351 153,289 26,773
11 1.164 6.464 37.010 154,702 27,019
12 1.153 6.407 36.683 156,080 27,260
13 1.143 6.352 36.369 157,428 27,496
14 1.134 6.299 36.066 158,751 27,727

15 1.125 6.248 35.773 160,052 27,954
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Table 9. Absolute rates of strictly-aircraft caused and aircraft-related events in the first 15 hours of ATSLI, for
generic piston planes, regardless of engine count.

Aggregate Piston Airplanes - regardless of engine count

ATSLI  ¢(t) Aqstrict Aq aircraft MTBEF strict MTBE aircraft

aircraft related aircraft related
(h) (pMh) (pMh) (h) (h)
1 1.338 11.096 66.231 90,126 15,099
2 1.300 10.782 64.358 92,749 15,538
3 1.275 10.575 63.122 94,565 15,842
4 1.256 10.411 62.144 96,053 16,092
5 1.239 10.271 61.309 97,361 16,311
6 1.224 10.147 60.566 98,555 16,511
7 1.210 10.033 59.889 99,670 16,698
8 1.197 9.928 59.261 100,726 16,874
9 1.186 9.829 58.672 101,737 17,044
10 1.174 9.736 58.115 102,713 17,207
11 1.164 9.647 57.584 103,660 17,366
12 1.153 9.562 57.075 104,583 17,521
13 1.143 9.480 56.587 105,487 17,672
14 1.134 9.401 56.115 106,373 17,821
15 1.125 9.324 55.659 107,245 17,967

6. Conclusions

We examined a commonly held belief that maintenance raises the risk of accidents and serious
incidents in general aviation in the immediate service hours after an inspection. We subjected this
belief to quantitative scrutiny, and found it to be substantiated by data.

Specifically, we examined the distribution of time-in-service-since-last-inspection metrics in
failures occurring in the population of accidents and serious incidents reported to the NSTB in
2008-2024, affecting general aviation airplanes. We found this sample to be biased towards low time-
in-service values, because most planes are flown only a few hours between mandated inspections.
We studied the population of strictly aircraft-caused events using the strictly human-caused events as a
measure of bias. We verified via Kolmogorov-Smirnov hypothesis testing that the two populations are
statistically distinct. Via CPH model fitting, we estimated the average proportional hazards for the
first hours in service. Finally, we fitted the two populations with Weibull distributions and obtained an
analytic estimate of the proportional hazard as a function of time 1(t), which shows that in the first
hour in service, hazard rates are 33.8% higher than baseline.

Our findings consistently substantiate the belief that inspective maintenance increases danger in
the first hours of service after a plane returns from inspective maintenance. This belief, commonly held
on an empirical and anecdotal basis, is now supported by statistical evidence. Pilot and owners of Part
91 airplanes are therefore justified in exercising increased caution when performing post-maintenance
acceptance flights and flying those planes in the subsequent hours in service. Efforts to increase the
standards of maintenance processes and materials will likely reduce these risks.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF Cumulative Distribution Function
CFR Code of Federal Regulations
CHF Cumulative Hazard Function

CPH Cox’s Proportional Hazards (CPH) model

ECHF  Empirical Cumulative Hazard Function

FAA Federal Aviation Administration

GA General Aviation, i.e., operations performed according to Part 91 Regulations
MIF Maintenance-Induced Failure

PDF Probability Density Function

pMh per Million hours

MTBF Mean Time Between Failures

NTSB  National Transportation Safety Board

ATSLI  Airframe Time in Service since Last Inspection, measured in hours
ETSLI  Engine Time in Service since Last Inspection, measured in hours
TIS Time in Service

Appendix A. Reliability and Survival Statistics Term Summary

We offer a concise refresher of reliability statistics as we will apply them in this paper.

Survival analysis is the branch of statistics that studies and predicts the expected duration of time until an
event of interest occurs (e.g., death in living organisms, failure in mechanical systems) on the basis of measured
data.

In our application, the events of interest are NTSB-tracked events (accidents or serious incidents), that were
categorized as strictly aircraft-caused or strictly human-caused, per definitions given above.

In the term definitions below, the term failure denote the event of interest, and not an airplane failure in the
general sense. It is possible for many mechanical failures to occur and not lead to any NTSB event, and therefore
no failure in the sense of word used here. The readers should avoid being confused by this ambiguity.

e f(t) is the failure Probability Density Function (PDF) of the lifetimes.

—  Itis the probability that a failure occurs at time .

_ limy; g p(t<T§t:t+dt) )

—  Equivalently: what fraction of the population experienced a failure around time ¢.

e F(t)is the Cumulative Density Function (CDF):
—  The probability that a failure occurs at any time before ¢

F(t) = [y f(x)dx

- Equivalently, what fraction of the population has already experienced a failure at time t

—  Inour application, F(t) is the fraction of planes that have suffered an event at or before time t
e h(t) is the Hazard function (HF)

- The conditional probability that a failure will occur between t and ¢ + d, given that it hasn’t occurred
yet at time ¢.
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. t<T<=t+dt|T>t
= 2(t) = limgy_ o PUSTESHTED

- ltequalsz(t) = %

e Difference between f(t) and h(t)

- f(t)Atis the (unconditional) probability that the element will fail in the interval (¢, t + Af]
- h(t)Atis the conditional probability that the element will fail in the same time interval, given that it has
survived until time ¢.

. R(t), the Reliability Function, also called the Survival Function (SF)
-  Defined as R(t) =1 — F(t)
—  The probability that the member of the population survives at least till time ¢ (i.e., does not experience

an event before t): R(t) = p(X > t)
- Equivalently, what fraction of the population has not yet suffered an event at a given time.
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